
Daniele Giannetti

Introduction

• Virtual Reality – nonexistent environments built using complex
computerized systems, where the user feels to be part of the virtual world.

• PERCRO (PERCeptual RObotics) lab – research laboratory working in the
field of virtual reality systems.

Virtual Reality and PERCRO lab

Daniele Giannetti 1

Introduction

• XVR (eXtreme Virtual Reality) – virtual reality
applications development environment built
and used at PERCRO.

XVR and VRLib

Daniele Giannetti 2

• VRLib (Virtual Reality Library) – real-time rendering library used by XVR to
visualize 3D scenes, based on the OpenGL graphics system.

XVR Engine VRLib OpenGL

Part of the XVR Virtual Machine

• OpenGL (Open Graphics Library) – software interface to graphics hardware
used to produce pictures of virtual scenes.

Introduction

New graphics programming
paradigm based on shaders.

OpenGL Deprecation Model: old
features removed moving towards

a fully programmable pipeline.

VRLib requires deep refactoring in
order to retain its status of high

quality and modern graphics
engine.

VR3Lib: a new VRLib [1]

Daniele Giannetti 3

Development of a new low level real-time rendering library: the VR3Lib.

Need for built-in and easy to use
access to modern rendering

techniques in order to obtain
realistic virtual environments.

Need for built-in physical
simulation in order to easily build
physically realistic virtual reality

application.

Introduction
VR3Lib: a new VRLib [2]

Daniele Giannetti 4

• The VR3Lib is the new version of the VRLib library, result of a complete
rewriting of the previous engine, including built-in support for:

 Physical simulation of virtual objects (rigid bodies)

 Many shader-based modern rendering techniques

Those two aspects represent the true innovation obtained using the VR3Lib.

• The new library was built maintaining and extending the API from the
previous version (currently used by the XVR technology and applied in
several research labs across EU) in order to allow easy integration of the
VR3Lib as a VRLib replacement.

• Because XVR is often applied in interactive web applications, the new
VR3Lib is (as the previous version) lightweight, only including needed
functionalities.

Joining Graphics and Physics
The Nvidia PhysX Engine

Daniele Giannetti 5

• We decided to use a free, fast and reliable solution to obtain physical
simulation of virtual objects: the Nvidia PhysX engine.

• The physical simulation thread is managed by PhysX directly and the
VR3Lib only needs to synchronize with it when simulation results are
needed to update scene properties (such as object position and rotation).

• Physical simulation is carried on by PhysX while the main rendering cycle
proceeds using VR3Lib draw calls (multithreaded and efficient solution).

The PhysX engine is currently available
only for Windows operating systems.
VR3Lib physical simulation services will
not be available on different operating
systems.

Joining Graphics and Physics
Two Representations for Virtual Objects

Daniele Giannetti 6

• Two descriptions for virtual objects:

 Graphical description (mesh, materials, textures, …)

 Physical description (physical mesh, mass, …)

• Potentially different: complex objects may have a very simple shape for
physical simulation.

Joining Graphics and Physics
Extending the AAM File Format

Daniele Giannetti 7

The AAM file format is the format
used by the VRLib library family to
obtain data on virtual objects
(shape, material, etc…).

The file format was extended to
include a physical description of
virtual objects.

• The physical description and graphical description of the virtual objects
are tightly coupled together.

• The physical representation for a virtual object is automatically generated
depending on the type of simulation desired for the particular object.

• AAM files are created with a modeling software such as 3ds Max, using a
GUI-provided exportation plug-in.

Obtaining Visual Realism
Direct Illumination of Virtual Objects

Daniele Giannetti 8

Flat surfaces are shaded
simply using the normals of

each polygon.

(flat shading)

Curved surfaces are shaded
considering an interpolated
normal for each fragment.

(Phong interpolation)

Considering point light sources, compute realistic lighting of virtual objects.
We use the well-known Phong reflection model to obtain the resulting color.

Obtaining Visual Realism
Image-Based Lighting [1]

Daniele Giannetti 9

Image-Based Lighting (IBL): Obtaining
realistic illumination using real world
pictures instead of point light sources.

IBL is a family of techniques, some of
the approaches commonly used are
only valid for non-interactive
applications.

Usually, High Dynamic Range (HDR)
digital pictures are used to compute
illumination of virtual scenes. Those
pictures are obtained using advanced
photographic techniques.

Obtaining Visual Realism
Image-Based Lighting [2]

Daniele Giannetti 10

• We use a cube environment mapping approach to image-based lighting:
real world pictures are transformed in cube environment maps to be used
for shading, and a set of cube maps is used to compute illumination of
objects.

• We usually apply two cube environment maps:

 Diffuse cube environment map

 Specular cube environment map

Obtaining Visual Realism
Surface Details using Normal Maps

Daniele Giannetti 11

• Highly detailed objects (with a lot of polygons) may introduce a heavy load
on the rendering pipeline, leading to a reduced frame rate.

• The normal mapping technique forges surface details using image-driven
normal perturbation.

• Significantly improve visual realism with a very small additional
computational effort.

Obtaining Visual Realism
Surface Details using Displacement Maps

Daniele Giannetti 12

• With displacement mapping, geometry is dynamically altered at
rendering time: we use the highly parallel floating point architecture of
modern graphics cards to efficiently generate the surface details
tessellating and displacing the geometry.

• Usually combined with the normal mapping technique to forge micro-
details that do not require displacement mapping.

• Computationally expensive.

Obtaining Visual Realism
Casting Shadows in Real-Time

Daniele Giannetti 13

Two well-known basic real-time shadow casting algorithms.

Shadow Mapping

Render the scene from the point of
view of the light source, a shadow
map is obtained to be used during

final scene rendering.

Shadow Volumes

Silhouette edges are extended to
obtain shadow volume polygons that
confine shadowed regions of the 3D

space.

Hard-edged shadows are obtained, but to achieve realistic results we need to
produce soft-edged shadows with penumbra regions (or soft shadows).

Obtaining Visual Realism
Soft Shadow Mapping [1]

Daniele Giannetti 14

Many different techniques to obtain soft shadows using shadow mapping.

VSM (2006)

Pre-filter the shadow map
considering the result as a

set of probability
distributions of depth.

PCSS (2005)

Filter the shadow map at
rendering time using PCF
with variable filter size.

ESM (2008)

Same as VSM, but only a
single channel is needed
and filtering results are

used differently.

Obtaining Visual Realism
Soft Shadow Mapping [2]

Daniele Giannetti 15

• An innovative technique: EVSM (Exponential Variance Shadow Mapping).

• EVSM improves upon VSM and ESM by reducing artifacts obtained:

 Light bleeding

 Artifacts for non-planar receivers

• Introduced in the VR3Lib as a built-in functionality for soft shadow casting.

Obtaining Visual Realism
Implementation of the Previous Techniques

Daniele Giannetti 16

• All the presented rendering algorithms (and more) have been introduced
in the VR3Lib as built-in and easy to use features.

• Most of the work in realizing the presented techniques was writing the
shader programs executed on the GPU during rendering.

• GLSL (OpenGL Shading Language) is the shading language of choice when
working with OpenGL (direct support for compilation, linking and loading).

• The VR3Lib core is a software module capable of managing and
dynamically loading the shader programs needed for rendering.

• The AAM file format (and therefore the 3ds Max exporter) was also
extended to include data needed for the new rendering techniques (such
as the name of the normal map file and the coordinates for its
application).

Testing and Performance
Geometric Complexity

Daniele Giannetti 17

• Interactive virtual reality applications performance is always measured in
terms of time needed to draw a single frame (frame time) or its reciprocal
(frame rate).

• VR3Lib – based applications performance also depends upon the solution
used to manage the OpenGL window and the framebuffer.

• VR3Lib performances depending on the number of polygons in the scene:

 10k triangles → frame time < 2 ms

 100k triangles → frame time < 4 ms

 650k triangles → frame time < 8 ms

 3M triangles → frame time ≈ 31 ms

The effective values also depend upon the on-screen size of the visualized
virtual objects.

Testing and Performance
Shading Techniques

Daniele Giannetti 18

• 512x512 textures, 1024x768 viewport, 6912 triangles, environment mapping.

• Simple geometry to highlight differences.

• Displacement mapping performance is rather disappointing, we plan to
investigate on adaptive geometry tessellation using different approaches (such
as tessellation shaders).

Testing and Performance
Shadowing

Daniele Giannetti 19

• 512x512 shadow map, 1024x768 viewport, 10572 triangles.

• EVSM applied with gaussian blur pre-filtering of the shadow map, average
frame time grows linearly with filter size (separable filter).

• Our technique is efficient and produces good looking soft shadows, more
expensive methods may not be fast enough for interactive applications.

Testing and Performance
Physics Simulation

Daniele Giannetti 20

• Simulation takes place in a separate (PhysX managed) thread.

• If results are not ready when needed, we skip the objects state update
phase and proceed to the scene rendering.

• The physical simulation of the scene (even when extremely complex) will
never affect frame time if the two threads may execute at the same time
(but the simulation may become fairly inaccurate).

Conclusion and Future Work

Daniele Giannetti 21

• The realized library is a full-featured graphics and physics standalone
engine to use when building virtual reality applications.

• The next planned step is integration of the VR3Lib library into the XVR
virtual reality application development system.

• The VR3Lib will need continuous maintenance in order to retain its
status of modern and last-generation virtual reality engine.

• Some work may still be done in order to improve the rendering
capabilities included in the new library (and introduce more
functionalities). As in the previous version, VR3Lib functionalities may
also be extended by means of user-provided shaders.

• We may add support for physical simulation of non-rigid bodies
(clothes, fluids and soft bodies).

• Ease of use is one of the key requirements that will lead future VR3Lib
development.

Example of a CAVE system

Daniele Giannetti 22

